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L E A R N I N G  O B J E C T I V E S

After completing this chapter, you should be able to:

LO19.1 Describe the type of problem that would lend itself to solution using linear programming.

LO19.2 Formulate a linear programming model from a description of a problem.

LO19.3 Solve simple linear programming problems using the graphical method.

LO19.4 Interpret computer solutions of linear programming problems.

LO19.5 Do sensitivity analysis on the solution of a linear programming problem.

C H A P T E R  O U T L I N E
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Linear programming is a powerful quantitative tool used by operations managers and other managers to obtain optimal solu-
tions to problems that involve restrictions or limitations, such as budgets and available materials, labor, and machine time. 
These problems are referred to as constrained optimization problems. There are numerous examples of linear programming 
applications to such problems, including:

• Establishing locations for emergency equipment and personnel that will minimize response time

• Determining optimal schedules for airlines for planes, pilots, and ground personnel

• Developing financial plans

• Determining optimal blends of animal feed mixes

• Determining optimal diet plans

• Identifying the best set of worker–job assignments

• Developing optimal production schedules

• Developing shipping plans that will minimize shipping costs

• Identifying the optimal mix of products in a factory

• Performing production and service planning

© Kupicco/Getty RF

19.1 INTRODUCTION

Linear programming (LP) techniques consist of a sequence of steps that will lead to an optimal 

solution to linear-constrained problems, if an optimal solution exists. There are a number of 

different linear programming techniques; some are special-purpose (i.e., used to find solutions for 

specific types of problems) and others are more general in scope. This chapter covers the two gen-

eral-purpose solution techniques: graphical linear programming and computer solutions. Graphi-

cal linear programming provides a visual portrayal of many of the important concepts of linear 

programming. However, it is limited to problems with only two variables. In practice, computers 

are used to obtain solutions for problems, some of which involve a large number of variables.
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19.2 LINEAR PROGRAMMING MODELS

Linear programming models are mathematical representations of constrained optimization 

problems. These models have certain characteristics in common. Knowledge of these char-

acteristics enables us to recognize problems that can be solved using linear programming. In 

addition, it also can help us formulate LP models. The characteristics can be grouped into two 

categories: components and assumptions. First, let’s consider the components.

Four components provide the structure of a linear programming model:

1. Objective function

2. Decision variables

3. Constraints

4. Parameters

Linear programming algorithms require that a single goal or objective, such as the maxi-

mization of profits, be specified. The two general types of objectives are maximization and 

minimization. A maximization objective might involve profits, revenues, efficiency, or rate 

of return. Conversely, a minimization objective might involve cost, time, distance traveled, or 

scrap. The objective function is a mathematical expression that can be used to determine the 

total profit (or cost, etc., depending on the objective) for a given solution. 
Decision variables represent choices available to the decision maker in terms of amounts 

of either inputs or outputs. For example, some problems require choosing a combination of 

inputs to minimize total costs, while others require selecting a combination of outputs to 

maximize profits or revenues. 
Constraints are limitations that restrict the alternatives available to decision makers. The 

three types of constraints are less than or equal to (≤), greater than or equal to (≥), and simply 

equal to (=). A ≤ constraint implies an upper limit on the amount of some scarce resource 

(e.g., machine hours, labor hours, materials) available for use. A ≥ constraint specifies a mini-

mum that must be achieved in the final solution (e.g., must contain at least 10 percent real 

fruit juice, must get at least 30 MPG on the highway). The = constraint is more restrictive in 

the sense that it specifies exactly what a decision variable should equal (e.g., make 200 units 

of product A). A linear programming model can consist of one or more constraints. The con-

straints of a given problem define the set of combinations of the decision variables that satisfy 

all constraints; this set is referred to as the feasible solution space. Linear programming 

algorithms are designed to search the feasible solution space for the combination of decision 

variables that will yield an optimum in terms of the objective function.

An LP model consists of a mathematical statement of the objective and a mathematical 

statement of each constraint. These statements consist of symbols (e.g., x1, x2) that represent 

the decision variables and numerical values, called parameters. The parameters are fixed 

values; the model is solved given those values.

Example 1 illustrates an LP model.
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LO19.1 Describe the type 

of problem that would 

lend itself to solution using 

linear programming.

Objective function  Math-

ematical statement of profit (or 

cost, etc.) for a given solution.

Decision variables  Amounts 

of either inputs or outputs.

Constraints  Limitations 

that restrict the available 

alternatives.

Feasible solution space   

The set of all feasible combi-

nations of decision variables 

as defined by the constraints.

Parameters  Numerical 

constants.

Linear Programming Models Explained

Here is an LP model of a situation that involves the production of three possible products, 

each of which will yield a certain profit per unit, and each requires a certain use of two 

resources that are in limited supply: labor and materials. The objective is to determine how 

much of each product to make to achieve the greatest possible profit while satisfying all 

constraints.

  
Decision variables

  
  {   

 x  1   = Quantity of product 1 to produce

     x  2   = Quantity of product 2 to produce    

 x  3   = Quantity of product 3 to produce

  
      

Maximize

  

          5 x  1   + 8 x  2   + 4 x  3    (  profit )             (Objective function)

E X A M P L E  1 
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  Subject to

  

Labor

  

2 x  1   + 4 x  2   + 8 x  3  

  

≤ 250 hours

     
Material

  
7 x  1   + 6 x  2   + 5 x  3  

  
≤ 100 pounds                 (Constraints)

       
Product 1

  
  x  1  

  
≥ 10 units

     

 

  

           x  1  ,  x  2  ,  x  3  

  

≥ 0           (Nonnegativity constraints)

  

First, the model lists and defines the decision variables. These typically represent quan-
tities. In this case, they are quantities of three different products that might be produced.

Next, the model states the objective function. It includes every decision variable in the 

model and the contribution (profit per unit) of each decision variable. Thus, product x1 has 

a profit of $5 per unit. The profit from product x1 for a given solution will be 5 times the 

value of x1 specified by the solution; the total profit from all products will be the sum of the 

individual product profits. Thus, if x1 = 10, x2 = 0, and x3 = 6, the value of the objective 

function would be:

5(10) + 8(0) + 4(6) = 74

The objective function is followed by a list (in no particular order) of three constraints. 

Each constraint has a right-hand-side numerical value (e.g., the labor constraint has a right-

hand-side value of 250) that indicates the amount of the constraint and a relation sign that 

indicates whether that amount is a maximum (≤), a minimum (≥), or an equality (=). The 

left-hand side of each constraint consists of the variables subject to that particular con-

straint and a coefficient for each variable that indicates how much of the right-hand-side 

quantity one unit of the decision variable represents. For instance, for the labor constraint, 

one unit of x1 will require two hours of labor. The sum of the values on the left-hand side of 

each constraint represents the amount of that constraint used by a solution. x1 = 10, x2 = 0, 

and x3 = 6, the amount of labor used would be:

2(10) + 4(0) + 8(6) = 68 hours

Because this amount does not exceed the quantity on the right-hand side of the con-

straint, it is said to be feasible.
Note that the third constraint refers to only a single variable; x1 must be at least 10 units. 

Its implied coefficient is 1, although that is not shown.

Finally, there are the nonnegativity constraints. These are listed on a single line; they 

reflect the condition that no decision variable is allowed to have a negative value.

In order for LP models to be used effectively, certain assumptions must be satisfied:

 1. Linearity: The impact of decision variables is linear in constraints and the objective 

function.

 2. Divisibility: Noninteger values of decision variables are acceptable.

 3. Certainty: Values of parameters are known and constant.

 4. Nonnegativity: Negative values of decision variables are unacceptable.

Model Formulation
An understanding of the components of linear programming models is necessary for model 

formulation. This helps provide organization to the process of assembling information about 

a problem into a model.

Naturally, it is important to obtain valid information on what constraints are appropriate, as 

well as on what values of the parameters are appropriate. If this is not done, the usefulness of 

the model will be questionable. Consequently, in some instances, considerable effort must be 

expended to obtain that information.

In formulating a model, use the format illustrated in Example 1. Begin by identifying the 

decision variables. Very often, decision variables are “the quantity of” something, such as 

LO19.2 Formulate a linear 

programming model from 

a description of a problem.
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x1 = the quantity of product 1. Generally, decision variables have profits, costs, times, or a 

similar measure of value associated with them. Knowing this can help you identify the deci-

sion variables in a problem.

Constraints are restrictions or requirements on one or more decision variables, and they 

refer to available amounts of resources such as labor, material, or machine time, or to minimal 

requirements, such as “Make at least 10 units of product 1.” It can be helpful to give a name 

to each constraint, such as “labor” or “material 1.” Let’s consider some of the different kinds 

of constraints you will encounter.

1. A constraint that refers to one or more decision variables. This is the most common kind 

of constraint. The constraints in Example 1 are of this type.

2. A constraint that specifies a ratio. For example, “The ratio of x1 to x2 must be at least 3 

to 2.” To formulate this, begin by setting up the following ratio:

   
 x  1  

 __ 
 x  2  

   ≥   
3
 __ 

2
   

Then, cross multiply, obtaining

 2 x  1   ≥ 3 x  2    

This is not yet in a suitable form because all variables in a constraint must be on the left-hand 

side of the inequality (or equality) sign, leaving only a constant on the right-hand side. To 

achieve this, we must subtract the variable amount that is on the right side from both sides. 

That yields

 2 x  1   − 3 x  2   ≥ 0 

(Note that the direction of the inequality remains the same.)

3. A constraint that specifies a percentage for one or more variables relative to one or more 

other variables. For example, “x1 cannot be more than 20 percent of the mix.” Suppose that 

the mix consists of variables x1, x2, and x3. In mathematical terms, this would be

   x  1   ≤ .20 (   x  1   +  x  2   +  x  3   )    

As always, all variables must appear on the left-hand side of the relationship. To accomplish 

that, we can expand the right-hand side, and then subtract the result from both sides. Expand-

ing yields

  x  1   ≤ .20 x  1   + .20 x  2   + .20 x  3   

Subtracting yields

 .80 x  1   − .20 x  2   − .20 x  3   ≤ 0 

Once you have formulated a model, the next task is to solve it. The following sections 

describe two approaches to problem solution: graphical solutions and computer solutions.

19.3 GRAPHICAL LINEAR PROGRAMMING

Graphical linear programming is a method for finding optimal solutions to two-variable 

problems. This section describes that approach.

Outline of Graphical Procedure
The graphical method of linear programming involves plotting the constraint lines on a graph 

and identifying an area on the graph that satisfies all of the constraints. The area is referred to 

as the feasible solution space. Next, the objective function is plotted and used to identify the 

optimal point in the feasible solution space. The coordinates of the point can sometimes be 

read directly from the graph, although generally an algebraic determination of the coordinates 

of the point is necessary.

LO19.3 Solve simple 

linear programming prob-

lems using the graphical 

method.

Graphical linear programming   

Graphical method for  finding 

optimal solutions to two- 

variable problems.
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The general procedure followed in the graphical approach is as follows:

 1. Set up the objective function and the constraints in mathematical format.

 2. Plot the constraints.

 3. Identify the feasible solution space.

 4. Plot the objective function.

 5. Determine the optimum solution.

The technique can best be illustrated through solution of a typical problem. Consider the 

problem described in Example 2.

Resource Amount Available

Assembly time 100 hours

Inspection time 22 hours

Storage space 39 cubic feet

Graphing the Problem and Finding the Optimal Solution

General description: A firm that assembles computers and computer equipment is about 

to start production of two new types of microcomputers. Each type will require assembly 

time, inspection time, and storage space. The amounts of each of these resources that can be 

devoted to the production of the microcomputers is limited. The manager of the firm would 

like to determine the quantity of each microcomputer to produce in order to maximize the 

profit generated by sales of these microcomputers.

Additional information: In order to develop a suitable model of the problem, the manager 

has met with design and production personnel. As a result of those meetings, the manager 

has obtained the following information.

E X A M P L E  2 

  Type 1 Type 2

Profit per unit $60 $50

Assembly time per unit 4 hours 10 hours

Inspection time per unit 2 hours 1 hour

Storage space per unit 3 cubic feet 3 cubic feet

The manager also has acquired information on the availability of company resources. 

These (daily) amounts are as follows.

The manager met with the firm’s marketing manager and learned that demand for the 

microcomputers was such that whatever combination of these two types of microcomputers 

is produced, all of the output can be sold.

In terms of meeting the assumptions, it would appear that the relationships are linear: The 

contribution to profit per unit of each type of computer and the time and storage space per 

unit of each type of computer are the same regardless of the quantity produced. Therefore, the 

total impact of each type of computer on the profit and each constraint is a linear function of 

the quantity of that variable. There may be a question of divisibility because, presumably, only 

whole units of computers will be sold. However, because this is a recurring process (i.e., the 

computers will be produced daily; a noninteger solution such as 3.5 computers per day will 

result in 7 computers every other day), this does not seem to pose a problem. The question of 

certainty cannot be explored here; in practice, the manager could be questioned to determine 

if there are any other possible constraints and whether the values shown for assembly times, 

and so forth, are known with certainty. For the purposes of discussion, we will assume cer-

tainty. Last, the assumption of nonnegativity seems justified; negative values for production 

quantities would not make sense.
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Because we have concluded that linear programming is appropriate, let us now turn our attention 

to constructing a model of the microcomputer problem. First, we must define the decision variables. 

Based on the statement “The manager . . . would like to determine the quantity of each microcom-

puter to produce,” the decision variables are the quantities of each type of computer. Thus,

x1 = quantity of type 1 to produce

x2 = quantity of type 2 to produce

Next, we can formulate the objective function. The profit per unit of type 1 is listed as $60, 

and the profit per unit of type 2 is listed as $50, so the appropriate objective function is

Maximize Z = 60x1 + 50x2

where Z is the value of the objective function, given values of x1 and x2. Theoretically, a 

mathematical function requires such a variable for completeness. However, in practice, the 

objective function often is written without the Z as sort of a shorthand version. (That approach 

is underscored by the fact that computer input does not call for Z: It is understood. The output 

of a computerized model does include a Z, though.)

Now for the constraints. There are three resources with limited availability: assembly time, 

inspection time, and storage space. The fact that availability is limited means that these con-

straints will all be ≤ constraints. Suppose we begin with the assembly constraint. The type 1 

microcomputer requires 4 hours of assembly time per unit, whereas the type 2 microcomputer 

requires 10 hours of assembly time per unit. Therefore, with a limit of 100 hours available, the 

assembly constraint is

4x1 + 10x2 ≤ 100 hours

Similarly, each unit of type 1 requires 2 hours of inspection time, and each unit of type 2 

requires 1 hour of inspection time. With 22 hours available, the inspection constraint is

2x1 + 1x2 ≤ 22

(Note: The coefficient of 1 for x2 need not be shown. Thus, an alternative form for this con-

straint is 2x1 + x2 ≤ 22.) The storage constraint is determined in a similar manner:

3x1 + 3x2 ≤ 39

There are no other system or individual constraints. The nonnegativity constraints are

x1, x2 ≥ 0

In summary, the mathematical model of the microcomputer problem is

x1 = quantity of type 1 to produce

x2 = quantity of type 2 to produce

Maximize 60x1 + 50x2

Subject to

 

  

Assembly

  

4 x  1   + 10 x  2  

  

≤

  

100 hours

    
Inspection

  
2 x  1   + 1 x  2  

  
≤

  
22 hours

    
Storage

  
3 x  1   + 3 x  2  

  
≤

  
39 cubic feet

     

 

  

        x  1  ,  x  2  

  

≥

  

0

   

The next step is to plot the constraints.

Plotting Constraints
Begin by placing the nonnegativity constraints on a graph, as in Figure 19.1. The procedure 

for plotting the other constraints is simple:

 1. Replace the inequality sign with an equal sign. This transforms the constraint into an 

equation of a straight line.
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 2. Determine where the line intersects each axis.

a.  To find where it crosses the x2 axis, set x1 equal to zero and solve the equation for the

value of x2.

b.  To find where it crosses the x1 axis, set x2 equal to zero and solve the equation for the

value of x1

 3. Mark these intersections on the axes, and connect them with a straight line. (Note: If a
constraint has only one variable, it will be a vertical line on a graph if the variable is x1,

or a horizontal line if the variable is x2.)

 4. Indicate by shading (or by arrows at the ends of the constraint line) whether the inequal-

ity is greater than or less than. (A general rule to determine which side of the line satis-

fies the inequality is to pick a point that is not on line, such as 0,0, solve the equation

using these values, and see whether it is greater than or less than the constraint amount.)

 5. Repeat steps 1–4 for each constraint.

Consider the assembly time constraint:

4x1 + 10x2 ≤ 100

Removing the inequality portion of the constraint produces this straight line:

4x1 + 10x2 = 100

Next, identify the points where the line intersects each axis, as step 2 describes. Thus with 

x2 = 0, we find

4x1 + 10(0) = 100

Solving, we find that 4x1 = 100, so x1 = 25 when x2 = 0. Similarly, we can solve the equation 

for x2 when x1 = 0:

4(0) + 10x2 = 100

Solving for x2, we find x2 = 10 when x1 = 0.

Thus, we have two points: x1 = 0, x2 = 10, and x1 = 25, x2 = 0. We can now add this line to 
our graph of the nonnegativity constraints by connecting these two points (see Figure 19.2).

Next we must determine which side of the line represents points that are less than 100. To do 

this, we can select a test point that is not on the line, and we can substitute the x1 and x2 values of that 
point into the left-hand side of the equation of the line. If the result is less than 100, this tells us that 

all points on that side of the line are less than the value of the line (e.g., 100). Conversely, if the result 

is greater than 100, this indicates that the other side of the line represents the set of points that will 

yield values that are less than 100. A relatively simple test point to use is the origin (i.e., x1 = 0, x2 
= 0). Substituting these values into the equation yields obviously this is less than 100. Hence, the 
side of the line closest to the origin represents the “less than” area (i.e., the feasible region).

4(0) + 10(0) = 0

FIGURE 19.1
Graph showing the 

nonnegativity constraints

Nonnegativity

constraints

Area of

feasibility

Q
u

a
n

ti
ty

 o
f 

ty
p

e
 2

Quantity of type 1

0

= 0x
2 

= 0x
1 

x
1

x
2



830 Chapter Nineteen Linear Programming 

The feasible region for this constraint and the nonnegativity constraints then becomes the 

shaded portion shown in Figure 19.3.

For the sake of illustration, suppose we try one other point, say x1 = 10, x2 = 10. Substitut-

ing these values into the assembly constraint yields

4(10) + 10(10) = 140

Clearly this is greater than 100. Therefore, all points on this side of the line are greater than 

100 (see Figure 19.4).

Continuing with the problem, we can add the two remaining constraints to the graph. For 

the inspection constraint:

 1. Convert the constraint into the equation of a straight line by replacing the inequality sign 

with an equality sign:

    2 x  1   + 1 x  2   ≤ 22  becomes  2 x  1   + 1 x  2   = 22  

 2. Set x1 equal to zero and solve for x2:

  2(0) + 1x2 = 22

  Solving, we find x2 = 22. Thus, the line will intersect the x2 axis at 22.

 3. Next, set x2 equal to zero and solve for x1:

  2x1 + 1(0) = 22

  Solving, we find x1 = 11. Thus, the other end of the line will intersect the x1 axis at 11.

 4. Add the line to the graph (see Figure 19.5).

Note that the area of feasibility for this constraint is below the line (Figure 19.5). Again the 

area of feasibility at this point is shaded in for illustration, although when graphing problems, 

it is more practical to refrain from shading in the feasible region until all constraint lines have 

been drawn. However, because constraints are plotted one at a time, using a small arrow at the 

end of each constraint to indicate the direction of feasibility can be helpful.

The storage constraint is handled in the same manner:

 1. Convert it into an equality:

  3x1 + 3x2 = 39

 2. Set x1 equal to zero and solve for x2:

  3(0) + 3x2 = 39

FIGURE 19.2  Plot of the first constraint 

(assembly time)
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  Solving, x2 = 13. Thus, x2 = 13 when x1 = 0.

 3. Set x2 equal to zero and solve for x1:

  3x1 + 3(0) = 39

  Solving, x1 = 13. Thus, x1 = 13 when x2 0.

 4. Add the line to the graph (see Figure 19.6).

Identifying the Feasible Solution Space
The feasible solution space is the set of all points that satisfies all constraints. (Recall that the 

x1 and x2 axes form nonnegativity constraints.) The heavily shaded area shown in Figure 19.6 

is the feasible solution space for our problem.

The next step is to determine which point in the feasible solution space will produce 

the optimal value of the objective function. This determination is made using the objective 

function.

Plotting the Objective Function Line
Plotting an objective function line involves the same logic as plotting a constraint line: Deter-

mine where the line intersects each axis. Recall that the objective function for the microcom-

puter problem is

60x1 + 50x2

FIGURE 19.4  The point (10, 10) is above 

the constraint line
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This is not an equation because it does not include an equal sign. We can get around this by 

simply setting it equal to some quantity. Any quantity will do, although one that is evenly 

divisible by both coefficients is desirable.

Suppose we decide to set the objective function equal to 300. That is,

60x1 + 50x2 = 300

We can now plot the line on our graph. As before, we can determine the x1 and x2 intercepts 

of the line by setting one of the two variables equal to zero, solving for the other, and then 

reversing the process. Thus, with x1 = 0, we have

60(0) + 50x2 = 300

Solving, we find x2 = 6. Similarly, with x2 = 0, we have

60x1 + 50(0) = 300

Solving, we find x1 = 5. This line is plotted in Figure 19.7.

The profit line can be interpreted in the following way: It is an isoprofit line; every point 

on the line (i.e., every combination of x1 and x2 that lies on the line) will provide a profit of 

$300. We can see from the graph many combinations that are both on the $300 profit line and 

within the feasible solution space. In fact, considering noninteger as well as integer solutions, 

the possibilities are infinite.

Suppose we now consider another line, say the $600 line. To do this, we set the objective 

function equal to this amount. Thus,

60x1 + 50x2 = 600

Solving for the x1 and x2 intercepts yields these two points:

  

 x  1   intercept

  

 x  2   intercept

     x  1   = 10   x  1   = 0   

 x  2   = 0

  

 x  2   = 12

   

This line is plotted in Figure 19.8, along with the previous $300 line for purposes of 

comparison.

Two things are evident in Figure 19.8 regarding the profit lines. One is that the $600 line 

is farther from the origin than the $300 line; the other is that the two lines are parallel. The 

lines are parallel because they both have the same slope. The slope is not affected by the right 

side of the equation. Rather, it is determined solely by the coefficients 60 and 50. It would 

FIGURE 19.7  Microcomputer problem with 

$300 profit line added
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be correct to conclude that regardless of the quantity we select for the value of the objective 

function, the resulting line will be parallel to these two lines. Moreover, if the amount is 

greater than 600, the line will be even farther away from the origin than the $600 line. If the 

value is less than 300, the line will be closer to the origin than the $300 line. And if the value 

is between 300 and 600, the line will fall between the $300 and $600 lines. This knowledge 

will help in determining the optimal solution.

Consider a third line, one with the profit equal to $900. Figure 19.9 shows that line along 

with the previous two profit lines. As expected, it is parallel to the other two, and even farther 

away from the origin. However, the line does not touch the feasible solution space at all. Con-

sequently, there is no feasible combination of x1 and x2 that will yield that amount of profit. 

Evidently, the maximum possible profit is an amount between $600 and $900, which we can 

see by referring to Figure 19.9. We could continue to select profit lines in this manner, and 

eventually, we could determine an amount that would yield the greatest profit. However, there 

is a much simpler alternative. We can plot just one line, say the $300 line. We know that all 

other lines will be parallel to it. Consequently, by moving this one line parallel to itself we can 

“test” other profit lines. We also know that as we move away from the origin, the profits get 

larger. What we want to know is how far the line can be moved out from the origin and still be 

touching the feasible solution space, and the values of the decision variables at that point of 

greatest profit (i.e., the optimal solution). Locate this point on the graph by placing a straight 

edge along the $300 line (or any other convenient line) and sliding it away from the origin, 

being careful to keep it parallel to the line. This approach is illustrated in Figure 19.10.

Once we have determined where the optimal solution is in the feasible solution space, we 

must determine the values of the decision variables at that point. Then, we can use that infor-

mation to compute the profit for that combination.

Note that the optimal solution is at the intersection of the inspection boundary and the stor-

age boundary (see Figure 19.10). In other words, the optimal combination of x1 and x2 must 

satisfy both boundary (equality) conditions. We can determine those values by solving the 

two equations simultaneously. The equations are:

  
Inspection

  
2 x  1   + 1 x  2   = 22

    
Storage

  
3 x  1   + 3 x  2   = 39

  

The idea behind solving two simultaneous equations is to algebraically eliminate one of the 

unknown variables (i.e., to obtain an equation with a single unknown). This can be accom-

plished by multiplying the constants of one of the equations by a fixed amount and then 

adding (or subtracting) the modified equation from the other. (Occasionally, it is easier to 

multiply each equation by a fixed quantity.) For example, we can eliminate x2 by multiplying 

FIGURE 19.9  Microcomputer problem 
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the inspection equation by 3 and then subtracting the storage equation from the modified 

inspection equation. Thus,

   3 (  2 x  1   + 1 x  2   = 22 )     becomes  6 x  1   + 3 x  2   = 66  

Subtracting the storage equation from this produces

    6 x  1   + 3 x  2    = 66

−  (  3 x  1   + 3 x  2    = 39 

   3 x  1   + 0 x  2    = 27 

Solving the resulting equation yields x1 = 9. The value of x2 can be found by substituting x1 = 

9 into either of the original equations or the modified inspection equation. Suppose we use the 

original inspection equation. We have

2(9) + 1x2 = 22

Solving, we find x2 = 4.

Hence, the optimal solution to the microcomputer problem is to produce nine type 1 com-

puters and four type 2 computers per day. We can substitute these values into the objective 

function to find the optimal profit:

$60(9) + $50(4) = $740

Hence, the last line—the one that would last touch the feasible solution space as we moved away 

from the origin parallel to the $300 profit line—would be the line where profit equaled $740.

In this problem, the optimal values for both decision variables are integers. This will not 

always be the case; one or both of the decision variables may turn out to be noninteger. In 

some situations noninteger values would be of little consequence. This would be true if the 

decision variables were measured on a continuous scale, such as the amount of water, sand, 

sugar, fuel oil, time, or distance needed for optimality, or if the contribution per unit (profit, 

cost, etc.) were small, as with the number of nails or ball bearings to make. In some cases, 

the answer would simply be rounded down (maximization problems) or up (minimization 

problems) with very little impact on the objective function. Here, we assume that noninteger 

answers are acceptable as such.

Let’s review the procedure for finding the optimal solution using the objective function 

approach:

 1. Graph the constraints.

 2. Identify the feasible solution space.

 3. Set the objective function equal to some amount that is divisible by each of the objec-

tive function coefficients. This will yield integer values for the x1 and x2 intercepts and 

simplify plotting the line. Often, the product of the two objective function coefficients 

provides a satisfactory line. Ideally, the line will cross the feasible solution space close 

to the optimal point, and it will not be necessary to slide a straight edge because the 

optimal solution can be readily identified visually.

 4. After identifying the optimal point, determine which two constraints intersect there. 

Solve their equations simultaneously to obtain the values of the decision variables at the 

optimum.

 5. Substitute the values obtained in the previous step into the objective function to deter-

mine the value of the objective function at the optimum.

Redundant Constraints
In some cases, a constraint does not form a unique boundary of the feasible solution space. 

Such a constraint is called a redundant constraint. Two such constraints are illustrated in 

Figure 19.11. Note that a constraint is redundant if it meets the following test: Its removal 

would not alter the feasible solution space.

Redundant constraint  A 

constraint that does not form 

a unique boundary of the fea-

sible solution space.
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When a problem has a redundant constraint, at least one of the other constraints in the 

problem is more restrictive than the redundant constraint.

Solutions and Corner Points
The feasible solution space in graphical linear programming is typically a polygon. Moreover, 

the solution to any problem will always be at a corner point (intersection of constraints) of the 

polygon. It is possible to determine the coordinates of each corner point of the feasible solu-

tion space, and use those values to compute the value of the objective function at those points. 

Because the solution is always at a corner point, comparing the values of the objective func-

tion at the corner points and identifying the best one (e.g., the maximum value) is another way 

to identify the optimal corner point. Using the graphical approach, it is much easier to plot the 

objective function and use that to identify the optimal corner point. However, for problems 

that have more than two decision variables, and the graphical method isn’t appropriate, the 

“enumeration” approach is used to find the optimal solution.

With the enumeration approach, the coordinates of each corner point are determined, 

and then each set of coordinates is substituted into the objective function to determine its 

value at that corner point. After all corner points have been evaluated, the one with the maxi-

mum or minimum value (depending on whether the objective is to maximize or minimize) is 

identified as the optimal solution.

Thus, in the microcomputer problem, the corner points are x1 = 0, x2 = 10, x1 = 11, x2 = 

0 (by inspection; see Figure 19.10), and x1 = 9, x2 = 4 and x1 = 5, x2 = 8 (using simultaneous 

equations, as illustrated on the previous page). Substituting into the objective function, the 

values are $500 for (0,10); $740 for (9,4); $660 for (11,0), and $700 for (5,8). Because (9,4) 

yields the highest value, that corner point is the optimal solution.

In some instances, the objective function will be parallel to one of the constraint lines that 

forms a boundary of the feasible solution space. When this happens, every combination of 

x1and x2 on the segment of the constraint that touches the feasible solution space represents 

an optimal solution. Hence, there are multiple optimal solutions to the problem. Even in such 

a case, the solution will also be a corner point—in fact, the solution will be at two corner 

points: those at the ends of the segment that touches the feasible solution space. Figure 19.12 

illustrates an objective function line that is parallel to a constraint line.

Minimization
Graphical minimization problems are quite similar to maximization problems. There are, how-

ever, two important differences. One is that at least one of the constraints must be of the = or ≥ 

variety. This causes the feasible solution space to be away from the origin. The other difference 

is that the optimal point is the one closest to the origin. We find the optimal corner point by slid-

ing the objective function (which is an isocost line) toward the origin instead of away from it.

Enumeration approach   

Substituting the coordinates 

of each corner point into the 

objective function to deter-

mine which corner point is 

optimal.
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FIGURE 19.12
Some LP problems have 

multiple optimal solutions
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S O L U T I O N

Solving a Minimization Problem

Solve the following problem using graphical linear programming.

  

Minimize

  

Z = 8 x  1   + 12 x  2  

  

 

    

Subject to

  

5 x  1   + 2 x  2  

  

≥ 20

       4 x  1   + 3 x  2    ≥ 24    

 

  

 x  2  

  

≥ 2

    

 

  

 x  1   x  2  

  

≥ 0

   

E X A M P L E  3

 1. Plot the constraints (shown in Figure 19.13).

  a. Change the constraints to equalities.

  b. For each constraint, set x1 = 0 and solve for x2, then set x2 = 0 and solve for x1.

  c.  Graph each constraint. Note that x2 = 2 is a horizontal line parallel to the x1 axis and 

2 units above it.

 2. Shade the feasible solution space (see Figure 19.13).

 3. Plot the objective function.

  a.  Select a value for the objective function that causes it to cross the feasible solution 

space. Try 8 × 12 = 96; 8x1 + 12x2 = 96 (acceptable).

  b.  Graph the line (see Figure 19.14).

 4. Slide the objective function toward the origin, being careful to keep it parallel to the 

original line.

 5. The optimum (last feasible point) is shown in Figure 19.14. The x2 coordinate (x2 = 2) 

can be determined by inspection of the graph. Note that the optimum point is at the inter-

section of the line x2 = 2 and the line 4 x1 + 3x2 = 24. Substituting the value of x2 = 2 into 

the latter equation will yield the value of x1 at the intersection:

  4x1 + 3(2) = 24 x1 = 4.5

  Thus, the optimum is x1 = 4.5 units and x2 = 2.

 6. Compute the minimum cost:

  8x1 + 12x2 = 8(4.5) + 12(2) = 60
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Slack and Surplus
If a constraint forms the optimal corner point of the feasible solution space, it is called a 

 binding constraint. In effect, it limits the value of the objective function; if the constraint 

could be relaxed (less restrictive), an improved solution would be possible. For constraints 

that are not binding, making them less restrictive will have no impact on the solution.

If the optimal values of the decision variables are substituted into the left-hand side of 

a binding constraint, the resulting value will exactly equal the right-hand value of the con-

straint. However, there will be a difference with a nonbinding constraint. If the left-hand side 

is greater than the right-hand side, we say that there is surplus; if the left-hand side is less than 

the right-hand side, we say that there is slack. Slack can only occur in a ≤ constraint; it is the 

amount by which the left-hand side is less than the right-hand side when the optimal values of 

the decision variables are substituted into the left-hand side. And surplus can only occur in a ≥ 

constraint; it is the amount by which the left-hand side exceeds the right-hand side of the con-

straint when the optimal values of the decision variables are substituted into the left-hand side.

For example, suppose the optimal values for a problem are x1 = 10 and x2 = 20. If one of 

the constraints is

3x1 + 2x2 ≤ 100

substituting the optimal values into the left-hand side yields

3(10) + 2(20) = 70

Because the constraint is ≤, the difference between the values of 100 and 70 (i.e., 30) is slack. 
Suppose the optimal values had been x1 = 20 and x2 = 20. Substituting these values into the 

left-hand side of the constraint would yield 3(20) + 2(20) = 100. Because the left-hand side 

equals the right-hand side, this is a binding constraint; slack is equal to zero.

Now consider this constraint:

4x1 + x2 ≥ 50

Suppose the optimal values are x1 = 10 and x2 = 15; substituting into the left-hand side yields

4(10) + 15 = 55

Because this is a ≥ constraint, the difference between the left- and right-hand-side values is 

surplus. If the optimal values had been x1 = 12 and x2 = 2, substitution would result in the 

Binding constraint  A con-

straint that forms the optimal 

corner point of the feasible 

solution space.

Surplus  When the values of 

decision variables are substi-

tuted into a ≥ constraint, the 

amount by which the resulting 

value exceeds the right-hand-

side value.

Slack  When the values of 

decision variables are substi-

tuted into a ≤ constraint, the 

amount by which the resulting 

value is less than the right-

hand-side value.
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left-hand side being equal to 50. Hence, the constraint would be a binding constraint, and 

there would be no surplus (i.e., surplus would be zero).

19.4 THE SIMPLEX METHOD

The simplex method is a general-purpose linear programming algorithm widely used to solve 

large-scale problems. Although it lacks the intuitive appeal of the graphical approach, its abil-

ity to handle problems with more than two decision variables makes it extremely valuable for 

solving problems often encountered in operations management.

Although manual solution of linear programming problems using simplex can yield a 

number of insights into how solutions are derived, space limitations preclude describing it 

here. However, it is available on the website that accompanies this book. The discussion here 

will focus on computer solutions.

19.5 COMPUTER SOLUTIONS

The microcomputer problem will be used to illustrate computer solutions. We repeat it here 

for ease of reference.

Maximize 60 x  1   + 50 x  2  
  

where  x  1  
  

= the number of type 1 computers
       

 x  2  
  

= the number of type 2 computers
  

Subject to

Assembly

  

4 x  1   + 10 x  2  

  

≤ 100 hours

     
Inspection

  
2 x  1   + 1 x  2  

  
≤ 22 hours

     
Storage

  
3 x  1   + 3 x  2  

  
≤ 39cubic feet

     

 

  

          x  1  ,  x  2  

  

≥ 0

   

Solving LP Models Using MS Excel
Solutions to linear programming models can be obtained from spreadsheet software such as 

Microsoft’s Excel. Excel has a routine called Solver that performs the necessary calculations.

To use Solver:

 1. First, enter the problem in a worksheet, as shown in Figure 19.15. What is not obvious 

from the figure is the need to enter a formula for each cell where there is a zero (Solver 

automatically inserts the zero after you input the formula). The formulas are for the 

value of the objective function and the constraints, in the appropriate cells. Before you 

enter the formulas, designate the cells where you want the optimal values of x1 and x2. 

Here, cells D4 and E4 are used. To enter a formula, click on the cell that the formula 

will pertain to, and then enter the formula, starting with an equal sign. We want the opti-

mal value of the objective function to appear in cell G4. For G4, enter the formula

= 60*D4 + 50*E4

The constraint formulas, using cells C7, C8, and C9, are

for C7:

  

= 4*D4 + 10*E4

   for C8:  = 2*D4 + 1*E4   

for C9:

  

= 3*D4 + 3*E4

   

2. Now, to access Solver in Excel 2010 or 2007, click Data at the top of the worksheet, and 

in that ribbon, click on Solver in the Analysis group. In Excel 2010 the Solver menu will 

appear as illustrated in Figure 19.16. If it does not appear there, it must be enabled using 

the Add-ins menu. Begin by setting the Objective (i.e., indicating the cell where you 

want the optimal value of the objective function to appear). Note, if the activated cell is 

the cell designated for the value of Z when you click on Solver, Solver will automati-

cally set that cell as the Objective.

Simplex  A linear program-

ming algorithm that can solve 

problems having more than 

two decision variables.

LO19.4 Interpret com-

puter solutions of linear 

programming problems.
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Select the Max radio button if it isn’t already selected. The Changing Variable Cells are 

the cells where you want the optimal values of the decision variables to appear. Here, they are 

cells D4 and E4. We indicate this by the range D4:E4 (Solver will add the $ signs).

Finally, add the constraints by clicking on Add .  .  . When that menu appears, for each 

constraint, enter the cell that contains the formula for the left-hand side of the constraint, then 

select the appropriate inequality sign, and then enter the right-hand-side amount of the cell 

that has the right-hand-side amount. Here the right-hand-side amounts are used. After you 

have entered each constraint, either click on Add to add another constraint or click on OK to 

return to the Solver menu. (Note: Constraints can be entered in any order, and if cells are used 

for the right-hand side, then constraints with the same inequality could be grouped.) For the 

nonnegativity constraints simply check the checkbox to Make Unconstrained Variables Non-

Negative. Also select Simplex LP as the Solving Method. Click on Solve.

FIGURE 19.15
MS Excel worksheet for 

microcomputer problem

FIGURE 19.16
MS Excel Solver 

parameters for 

microcomputer problem



840 Chapter Nineteen Linear Programming 

 3. The Solver Results menu will then appear, indicating that a solution has been found, or 

that an error has occurred. If there has been an error, go back to the Solver Parameters 

menu and check to see that your constraints refer to the correct changing cells, and that 

the inequality directions are correct. Make the corrections and click on Solve.

   Assuming everything is correct, in the Solver Results menu, in the Reports box, high-

light both Answer and Sensitivity, and then click OK.

 4. Solver will incorporate the optimal values of the decision variables and the objective 

function in your original layout on your worksheet (see Figure 19.17). We can see that the 

optimal values are type 1 = 9 units and type 2 = 4 units, and the total profit is 740. The 

answer report will also show the optimal values of the decision variables (middle part  

of Figure 19.18), and some information on the constraints (lower part of Figure 19.18). 

Of particular interest here is the indication of which constraints have slack and how  

much slack.

FIGURE 19.17
MS Excel worksheet 

solution for microcomputer 

problem

FIGURE 19.18
MS Excel Answer Report 

for microcomputer problem
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We can see that the constraint entered in cell C7 (assembly) has a slack of 24, and that the 

constraints entered in cells C8 (inspection) and C9 (storage) have slack equal to zero, indicat-

ing that they are binding constraints.

19.6 SENSITIVITY ANALYSIS

Sensitivity analysis is a means of assessing the impact of potential changes to the param-

eters (the numerical values) of an LP model. Such changes may occur due to forces beyond a 

manager’s control, or a manager may be contemplating making the changes, say, to increase 

profits or reduce costs.

There are three types of potential changes:

1. Objective function coefficients

2. Right-hand values of constraints

3. Constraint coefficients

We will consider the first two of these here. We begin with changes to objective function 

coefficients.

Objective Function Coefficient Changes
A change in the value of an objective function coefficient can cause a change in the optimal 

solution of a problem. In a graphical solution, this would mean a change to another corner 

point of the feasible solution space. However, not every change in the value of an objective 

function coefficient will lead to a changed solution; generally there is a range of values for 
which the optimal values of the decision variables will not change. For example, in the micro-

computer problem, if the profit on type 1 computers increased from $60 per unit to, say, $65 

per unit, the optimal solution would still be to produce nine units of type 1 and four units of 

type 2 computers. Similarly, if the profit per unit on type 1 computers decreased from $60 

to, say, $58, producing nine of type 1 and four of type 2 would still be optimal. These sorts 

of changes are not uncommon; they may be the result of such things as price changes in raw 

materials, price discounts, cost reductions in production, and so on. Obviously, when a change 

does occur in the value of an objective function coefficient, it can be helpful for a manager 

to know if that change will affect the optimal values of the decision variables. The manager 

can quickly determine this by referring to that coefficient’s range of optimality, which is the 

range in possible values of that objective function coefficient over which the optimal values of 

the decision variables will not change. Before we see how to determine the range, consider the 

implication of the range. The range of optimality for the type 1 coefficient in the microcom-

puter problem is 50 to 100. That means that as long as the coefficient’s value is in that range, 

the optimal values will be nine units of type 1 and four units of type 2. Conversely, if a change 
extends beyond the range of optimality, the solution will change.

Similarly, suppose instead that the coefficient (unit profit) of type 2 computers was to 

change. Its range of optimality is 30 to 60. As long as the change doesn’t take it outside of this 

range, nine and four will still be the optimal values. Note, however, even for changes that are 

within the range of optimality, the optimal value of the objective function will change. If the 

type 1 coefficient increased from $60 to $61, and nine units of type 1 is still optimum, profit 

would increase by $9: nine units times $1 per unit. Thus, for a change that is within the range 

of optimality, a revised value of the objective function must be determined.

Now let’s see how we can determine the range of optimality using computer output.

Using MS Excel. There is a table for the Changing Cells (see Figure 19.19). It shows the 

value of the objective function that was used in the problem for each type of computer (i.e., 60 

and 50), and the allowable increase and allowable decrease for each coefficient. By subtract-

ing the allowable decrease from the original value of the coefficient, and adding the allowable 

LO19.5 Do sensitivity 

analysis on the solution 

to a linear programming 

problem.
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increase to the original value of the coefficient, we obtain the range of optimality for each 

coefficient. Thus, we find for type 1:

 60 − 10 = 50 and 60 + 40 = 100 

Hence, the range for the type 1 coefficient is 50 to 100. For type 2:

 50 − 20 = 30 and 50 + 10 = 60 

Hence the range for the type 2 coefficient is 30 to 60.

In this example, both of the decision variables are basic (i.e., nonzero). However, in other 

problems, one or more decision variables may be nonbasic (i.e., have an optimal value of 

zero). In such instances, unless the value of that variable’s objective function coefficient 

increases by more than its reduced cost, it won’t come into solution (i.e., become a basic 

variable). Hence, the range of optimality (sometimes referred to as the range of insignifi-
cance) for a nonbasic variable is from negative infinity to the sum of its current value and 

its reduced cost.

Now let’s see how we can handle multiple changes to objective function coefficients, that 

is, a change in more than one coefficient. To do this, divide each coefficient’s change by the 

allowable change in the same direction. Thus, if the change is a decrease, divide that amount 

by the allowable decrease. Treat all resulting fractions as positive. Sum the fractions. If the 

sum does not exceed 1.00, then multiple changes are within the range of optimality and will 

not result in any change to the optimal values of the decision variables.

Changes in the Right-Hand-Side (RHS) Value  

of a Constraint
In considering right-hand-side (RHS) changes, it is important to know if a particular con-

straint is binding on a solution. A constraint is binding if substituting the values of the deci-

sion variables of that solution into the left-hand side of the constraint results in a value that 

is equal to the RHS value. In other words, that constraint stops the objective function from 

achieving a better value (e.g., a greater profit or a lower cost). Each constraint has a corre-

sponding shadow price, which is a marginal value that indicates the amount by which the 

value of the objective function would change if there were a one-unit change in the RHS value 

of that constraint. If a constraint is nonbinding, its shadow price is zero, meaning that increas-

ing or decreasing its RHS value by one unit will have no impact on the value of the objective 

Shadow price  Amount by 

which the value of the objec-

tive function would change 

with a one-unit change in the 

RHS value of a constraint.

FIGURE 19.19
MS Excel sensitivity report 

for microcomputer problem
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function. Nonbinding constraints have either slack (if the constraint is ≤) or surplus (if the 

constraint is ≥). Suppose a constraint has 10 units of slack in the optimal solution, which 

means 10 units that are unused. If we were to increase or decrease the constraint’s RHS value 

by one unit, the only effect would be to increase or decrease its slack by one unit. But there is 

no profit associated with slack, so the value of the objective function wouldn’t change. On the 

other hand, if the change is to the RHS value of a binding constraint, then the optimal value 

of the objective function would change. Any change in a binding constraint will cause the 

optimal values of the decision variables to change, and hence, cause the value of the objective 

function to change. For example, in the microcomputer problem, the inspection constraint is 

a binding constraint; it has a shadow price of 10. That means if there was one hour less of 

inspection time, total profit would decrease by $10, or if there was one more hour of inspec-

tion time available, total profit would increase by $10. In general, multiplying the amount 

of change in the RHS value of a constraint by the constraint’s shadow price will indicate the 

change’s impact on the optimal value of the objective function. However, this is only true over 

a limited range called the range of feasibility. In this range, the value of the shadow price 

remains constant. Hence, as long as a change in the RHS value of a constraint is within its 

range of feasibility, the shadow price will remain the same, and one can readily determine the 

impact on the objective function.

Let’s see how to determine the range of feasibility from computer output.

Using MS Excel. In the sensitivity report there is a table labeled “Constraints” (see 

 Figure 19.19). The table shows the shadow price for each constraint, its RHS value, and 

the allowable increase and allowable decrease. Adding the allowable increase to the RHS 

value and subtracting the allowable decrease will produce the range of feasibility for that 

constraint. For example, for the inspection constraint, the range would be

22  −  4 = 18; 22 + 4 = 26

Hence, the range of feasibility for inspection is 18 to 26 hours. Similarly, for the storage con-

straint, the range is

 39 − 6 = 33 to 39 + 4.5 = 43.5 

The range for the assembly constraint is a little different; the assembly constraint is non-

binding (note the shadow price of 0) while the other two are binding (note their nonzero 

shadow prices). The assembly constraint has a slack of 24 (the difference between its RHS 

value of 100 and its final value of 76). With its slack of 24, its RHS value could be decreased 

by as much as 24 (to 76) before it would become binding. Conversely, increasing its right-

hand side will only produce more slack. Thus, no amount of increase in the RHS value will 

make it binding, so there is no upper limit on the allowable increase. Excel indicates this by 

the large value (1E + 30) shown for the allowable increase. So its range of feasibility has a 

lower limit of 76 and no upper limit.

If there are changes to more than one constraint’s RHS value, analyze these in the same way 

as multiple changes to objective function coefficients. That is, if the change is an increase, 

divide that amount by that constraint’s allowable increase; if the change is a decrease, divide 

the decrease by the allowable decrease. Treat all resulting fractions as positives. Sum the frac-

tions. As long as the sum does not exceed 1.00, the changes are within the range of feasibility 

for multiple changes, and the shadow prices won’t change.

Table 19.1 summarizes the impacts of changes that fall within either the range of optimal-

ity or the range of feasibility.

Now let’s consider what happens if a change goes beyond a particular range. In a situa-

tion involving the range of optimality, a change in an objective function that is beyond the 

range of optimality will result in a new solution. Hence, it will be necessary to recompute 

the solution. For a situation involving the range of feasibility, there are two cases to consider. 

The first case would be increasing the RHS value of a ≤ constraint to beyond the upper limit 

of its range of feasibility. This would produce slack equal to the amount by which the upper 

limit is exceeded. Hence, if the upper limit is 200, and the increase is 220, the result is that the 

Range of feasibility  Range 

of values for the RHS of a con-

straint over which the shadow 

price remains the same.
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constraint has a slack of 20. Similarly, for a ≥ constraint, going below its lower bound creates 

a surplus for that constraint. The second case for each of these would be exceeding the oppo-

site limit (the lower bound for a ≤ constraint, or the upper bound for a ≥ constraint). In either 

instance, a new solution would have to be generated.

TABLE 19.1
Summary of the impact 

of changes within their 

respective ranges

Linear programming is a powerful tool used for constrained optimization situations. Components of LP 

problems include an objective function, decision variables, constraints, and numerical values (param-

eters) of the objective function and constraints.

The size of real-life problems and the burden of manual solution make computer solutions the practi-

cal way to solve real-life problems. Even so, much insight can be gained through the study of simple, 

two-variable problems and graphical solutions.

SUMMARY

1. Optimizing techniques such as linear programming help business organizations make the best use 

of limited resources such as materials, time, and energy, to maximize profits or to minimize costs.

2. As with all techniques, it is important to confirm that the underlying assumptions on which the 

technique is based are reasonably satisfied by the model in order to achieve valid results.

3. Although the graphical technique has limited use due to the fact that it can only handle two-variable 

problems, it is very useful in conveying many of the important concepts associated with linear pro-

gramming techniques.
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A small construction firm specializes in building and selling single-family homes. The firm offers 

two basic types of houses, model A and model B. Model A houses require 4,000 labor hours, 2 

tons of stone, and 2,000 board feet of lumber. Model B houses require 10,000 labor hours, 3 tons of 

stone, and 2,000 board feet of lumber. Due to long lead times for ordering supplies and the scarcity 

of skilled and semiskilled workers in the area, the firm will be forced to rely on its present resources 

for the upcoming building season. It has 400,000 hours of labor, 150 tons of stone, and 200,000 

board feet of lumber. What mix of model A and B houses should the firm construct if model A yields 

Problem 1

SOLVED PROBLEMS

Changes to objective function coefficients that are within the  

range of optimality

Component Result

Values of decision variables No change

Value of objective function Will change

Changes to RHS values of constraints that are within the  

range of feasibility

Component Result

Value of shadow price No change

List of basic variables No change

Values of basic variables Will change

Value of objective function Will change




